4日目 (放射線耐性のシミュレーション) -- 演習問題問題1(大森)表面損傷による酸化膜界面の電荷は、電極間分離を悪くする。電極間の抵抗を測定するため、逆バイアスを-100Vかけた状態で三つの電極のうち両端の電極をGNDに、真ん中の電極にテスト電圧を0Vから10V程度までかけて電流をシミュレーションせよ。 また、この電圧電流特性から抵抗を求めて、TID依存性を考察せよ。(バルク損傷は fluence =0 でよい。)問題2(五屋)表面損傷が起こると、 n-in-p のセンサーでは、p-stop構造が必須である。p-stopがある場合とない場合で、MIPの応答が隣の電極に及ぼす影響を考察せよ。問題3(柏木)実デバイスの測定では、fluence=1e16neq/cm2 など、高い放射線照射によるバルクダメージが進むとCV測定からの全空乏化電圧の測定が難しくなる。 シミュレーションを用いて全空乏化電圧を推定せよ。 ヒント : IVのシミュレーションで -200V -400V -600V -1000Vの時の深さ方向の電荷密度分布から空乏層厚を推定するとよい。問題 4 (比江森)一般的に n-in-pセンサーは p-in-n センサーに比べて型反転がないという理由から、高放射線耐性下の実験で使用可能であるといわれている。 例題の n-in-pセンサーを p-in-nセンサーに変更してどのくらいの照射量で型反転が起こるか?等、空乏化の様子を考察せいよ。 ヒント 1 : p-in-nセンサーは、リンとホウ素のドープを逆にする。ただし、p-in-nの電極間には n-stopのような構造は必要ない。) ヒント 2 :裏面から型反転が起こっていることを確認するためには、低い逆バイアスをかけて電荷密度分布を作ってみるとよい。 --![]() Comments | ||||||||
Added: | ||||||||
> > |
| |||||||
4日目 (放射線耐性のシミュレーション) -- 演習問題 | ||||||||
Changed: | ||||||||
< < | 問題1() | |||||||
> > | 問題1(大森) | |||||||
表面損傷による酸化膜界面の電荷は、電極間分離を悪くする。電極間の抵抗を測定するため、逆バイアスを-100Vかけた状態で三つの電極のうち両端の電極をGNDに、真ん中の電極にテスト電圧を0Vから10V程度までかけて電流をシミュレーションせよ。 また、この電圧電流特性から抵抗を求めて、TID依存性を考察せよ。(バルク損傷は fluence =0 でよい。) | ||||||||
Changed: | ||||||||
< < | 問題2() | |||||||
> > | 問題2(五屋) | |||||||
表面損傷が起こると、 n-in-p のセンサーでは、p-stop構造が必須である。p-stopがある場合とない場合で、MIPの応答が隣の電極に及ぼす影響を考察せよ。 | ||||||||
Changed: | ||||||||
< < | 問題3() | |||||||
> > | 問題3(柏木) | |||||||
実デバイスの測定では、fluence=1e16neq/cm2 など、高い放射線照射によるバルクダメージが進むとCV測定からの全空乏化電圧の測定が難しくなる。 シミュレーションを用いて全空乏化電圧を推定せよ。 ヒント : IVのシミュレーションで -200V -400V -600V -1000Vの時の深さ方向の電荷密度分布から空乏層厚を推定するとよい。 | ||||||||
Changed: | ||||||||
< < | 問題 4 () | |||||||
> > | 問題 4 (比江森) | |||||||
一般的に n-in-pセンサーは p-in-n センサーに比べて型反転がないという理由から、高放射線耐性下の実験で使用可能であるといわれている。
例題の n-in-pセンサーを p-in-nセンサーに変更してどのくらいの照射量で型反転が起こるか?等、空乏化の様子を考察せいよ。
ヒント 1 : p-in-nセンサーは、リンとホウ素のドープを逆にする。ただし、p-in-nの電極間には n-stopのような構造は必要ない。)
ヒント 2 :裏面から型反転が起こっていることを確認するためには、低い逆バイアスをかけて電荷密度分布を作ってみるとよい。
-- ![]() Comments |
4日目 (放射線耐性のシミュレーション) -- 演習問題 | |||||||||
Changed: | |||||||||
< < | 問題1(鈴木) | ||||||||
> > | 問題1() | ||||||||
表面損傷による酸化膜界面の電荷は、電極間分離を悪くする。電極間の抵抗を測定するため、逆バイアスを-100Vかけた状態で三つの電極のうち両端の電極をGNDに、真ん中の電極にテスト電圧を0Vから10V程度までかけて電流をシミュレーションせよ。 また、この電圧電流特性から抵抗を求めて、TID依存性を考察せよ。(バルク損傷は fluence =0 でよい。) | |||||||||
Changed: | |||||||||
< < | 問題2(熊倉) | ||||||||
> > | 問題2() | ||||||||
表面損傷が起こると、 n-in-p のセンサーでは、p-stop構造が必須である。p-stopがある場合とない場合で、MIPの応答が隣の電極に及ぼす影響を考察せよ。 | |||||||||
Changed: | |||||||||
< < | 問題3(石井) | ||||||||
> > | 問題3() | ||||||||
実デバイスの測定では、fluence=1e16neq/cm2 など、高い放射線照射によるバルクダメージが進むとCV測定からの全空乏化電圧の測定が難しくなる。 シミュレーションを用いて全空乏化電圧を推定せよ。 ヒント : IVのシミュレーションで -200V -400V -600V -1000Vの時の深さ方向の電荷密度分布から空乏層厚を推定するとよい。 | |||||||||
Changed: | |||||||||
< < | 問題 4 (北) | ||||||||
> > | 問題 4 () | ||||||||
一般的に n-in-pセンサーは p-in-n センサーに比べて型反転がないという理由から、高放射線耐性下の実験で使用可能であるといわれている。
例題の n-in-pセンサーを p-in-nセンサーに変更してどのくらいの照射量で型反転が起こるか?等、空乏化の様子を考察せいよ。
ヒント 1 : p-in-nセンサーは、リンとホウ素のドープを逆にする。ただし、p-in-nの電極間には n-stopのような構造は必要ない。)
ヒント 2 :裏面から型反転が起こっていることを確認するためには、低い逆バイアスをかけて電荷密度分布を作ってみるとよい。
-- ![]() Comments | |||||||||
Deleted: | |||||||||
< < |
| ||||||||
4日目 (放射線耐性のシミュレーション) -- 演習問題問題1(鈴木)表面損傷による酸化膜界面の電荷は、電極間分離を悪くする。電極間の抵抗を測定するため、逆バイアスを-100Vかけた状態で三つの電極のうち両端の電極をGNDに、真ん中の電極にテスト電圧を0Vから10V程度までかけて電流をシミュレーションせよ。 また、この電圧電流特性から抵抗を求めて、TID依存性を考察せよ。(バルク損傷は fluence =0 でよい。)問題2(熊倉)表面損傷が起こると、 n-in-p のセンサーでは、p-stop構造が必須である。p-stopがある場合とない場合で、MIPの応答が隣の電極に及ぼす影響を考察せよ。問題3(石井)実デバイスの測定では、fluence=1e16neq/cm2 など、高い放射線照射によるバルクダメージが進むとCV測定からの全空乏化電圧の測定が難しくなる。 シミュレーションを用いて全空乏化電圧を推定せよ。 ヒント : IVのシミュレーションで -200V -400V -600V -1000Vの時の深さ方向の電荷密度分布から空乏層厚を推定するとよい。問題 4 (北)一般的に n-in-pセンサーは p-in-n センサーに比べて型反転がないという理由から、高放射線耐性下の実験で使用可能であるといわれている。 例題の n-in-pセンサーを p-in-nセンサーに変更してどのくらいの照射量で型反転が起こるか?等、空乏化の様子を考察せいよ。 ヒント 1 : p-in-nセンサーは、リンとホウ素のドープを逆にする。ただし、p-in-nの電極間には n-stopのような構造は必要ない。) ヒント 2 :裏面から型反転が起こっていることを確認するためには、低い逆バイアスをかけて電荷密度分布を作ってみるとよい。 --![]() Comments | |||||||||
Added: | |||||||||
> > |
| ||||||||
4日目 (放射線耐性のシミュレーション) -- 演習問題 | ||||||||
Changed: | ||||||||
< < | 問題1 | |||||||
> > | 問題1(鈴木) | |||||||
表面損傷による酸化膜界面の電荷は、電極間分離を悪くする。電極間の抵抗を測定するため、逆バイアスを-100Vかけた状態で三つの電極のうち両端の電極をGNDに、真ん中の電極にテスト電圧を0Vから10V程度までかけて電流をシミュレーションせよ。 また、この電圧電流特性から抵抗を求めて、TID依存性を考察せよ。(バルク損傷は fluence =0 でよい。) | ||||||||
Changed: | ||||||||
< < | 問題2 | |||||||
> > | 問題2(熊倉) | |||||||
表面損傷が起こると、 n-in-p のセンサーでは、p-stop構造が必須である。p-stopがある場合とない場合で、MIPの応答が隣の電極に及ぼす影響を考察せよ。 | ||||||||
Changed: | ||||||||
< < | 問題3 | |||||||
> > | 問題3(石井) | |||||||
実デバイスの測定では、fluence=1e16neq/cm2 など、高い放射線照射によるバルクダメージが進むとCV測定からの全空乏化電圧の測定が難しくなる。 シミュレーションを用いて全空乏化電圧を推定せよ。 ヒント : IVのシミュレーションで -200V -400V -600V -1000Vの時の深さ方向の電荷密度分布から空乏層厚を推定するとよい。 | ||||||||
Changed: | ||||||||
< < | 問題 4 | |||||||
> > | 問題 4 (北) | |||||||
一般的に n-in-pセンサーは p-in-n センサーに比べて型反転がないという理由から、高放射線耐性下の実験で使用可能であるといわれている。
例題の n-in-pセンサーを p-in-nセンサーに変更してどのくらいの照射量で型反転が起こるか?等、空乏化の様子を考察せいよ。
ヒント 1 : p-in-nセンサーは、リンとホウ素のドープを逆にする。ただし、p-in-nの電極間には n-stopのような構造は必要ない。)
ヒント 2 :裏面から型反転が起こっていることを確認するためには、低い逆バイアスをかけて電荷密度分布を作ってみるとよい。
-- ![]() Comments |
4日目 (放射線耐性のシミュレーション) -- 演習問題問題1表面損傷による酸化膜界面の電荷は、電極間分離を悪くする。電極間の抵抗を測定するため、逆バイアスを-100Vかけた状態で三つの電極のうち両端の電極をGNDに、真ん中の電極にテスト電圧を0Vから10V程度までかけて電流をシミュレーションせよ。 また、この電圧電流特性から抵抗を求めて、TID依存性を考察せよ。(バルク損傷は fluence =0 でよい。)問題2表面損傷が起こると、 n-in-p のセンサーでは、p-stop構造が必須である。p-stopがある場合とない場合で、MIPの応答が隣の電極に及ぼす影響を考察せよ。問題3 | ||||||||
Changed: | ||||||||
< < | fluence=1e16など、バルクダメージが進むとCV測定からの全空乏化電圧の測定が難しくなる。 | |||||||
> > | 実デバイスの測定では、fluence=1e16neq/cm2 など、高い放射線照射によるバルクダメージが進むとCV測定からの全空乏化電圧の測定が難しくなる。 | |||||||
シミュレーションを用いて全空乏化電圧を推定せよ。
ヒント : IVのシミュレーションで -200V -400V -600V -1000Vの時の深さ方向の電荷密度分布から空乏層厚を推定するとよい。
問題 4一般的に n-in-pセンサーは p-in-n センサーに比べて型反転がないという理由から、高放射線耐性下の実験で使用可能であるといわれている。 例題の n-in-pセンサーを p-in-nセンサーに変更してどのくらいの照射量で型反転が起こるか?等、空乏化の様子を考察せいよ。 ヒント 1 : p-in-nセンサーは、リンとホウ素のドープを逆にする。ただし、p-in-nの電極間には n-stopのような構造は必要ない。) ヒント 2 :裏面から型反転が起こっていることを確認するためには、低い逆バイアスをかけて電荷密度分布を作ってみるとよい。 --![]() Comments |
4日目 (放射線耐性のシミュレーション) -- 演習問題問題1表面損傷による酸化膜界面の電荷は、電極間分離を悪くする。電極間の抵抗を測定するため、逆バイアスを-100Vかけた状態で三つの電極のうち両端の電極をGNDに、真ん中の電極にテスト電圧を0Vから10V程度までかけて電流をシミュレーションせよ。 また、この電圧電流特性から抵抗を求めて、TID依存性を考察せよ。(バルク損傷は fluence =0 でよい。)問題2表面損傷が起こると、 n-in-p のセンサーでは、p-stop構造が必須である。p-stopがある場合とない場合で、MIPの応答が隣の電極に及ぼす影響を考察せよ。問題3fluence=1e16など、バルクダメージが進むとCV測定からの全空乏化電圧の測定が難しくなる。 シミュレーションを用いて全空乏化電圧を推定せよ。 ヒント : IVのシミュレーションで -200V -400V -600V -1000Vの時の深さ方向の電荷密度分布から空乏層厚を推定するとよい。問題 4一般的に n-in-pセンサーは p-in-n センサーに比べて型反転がないという理由から、高放射線耐性下の実験で使用可能であるといわれている。 例題の n-in-pセンサーを p-in-nセンサーに変更してどのくらいの照射量で型反転が起こるか?等、空乏化の様子を考察せいよ。 ヒント 1 : p-in-nセンサーは、リンとホウ素のドープを逆にする。ただし、p-in-nの電極間には n-stopのような構造は必要ない。) ヒント 2 :裏面から型反転が起こっていることを確認するためには、低い逆バイアスをかけて電荷密度分布を作ってみるとよい。 --![]() Comments |