

New Signal Region Study Using Single Lepton Trigger

Satoshi Higashino (KEK) Koji Nakamura (KEK) Yohei Yamaguchi (Osaka U.)

2017 / 4 / 13

Topics

- What kind of triggers could be added in HIGG1D1?
 - ⇒ single lepton trigger
 - lepton + multi photon trigger

▶ e.g.

- HLT_e20_Ihmedium_2g10_loose
- HLT_2g10_loose_mu20
- Photon pT threshold optimisation
 - Iow pT photon selection might cause dramatical BG increase
- PV selection
 - photon pointing NN vs hardest vertex

LHC-ATLAS実験でのttH過程探索

- •重心系エネルギー13TeVでの陽子陽子衝突実験
- ヒッグス粒子とトップクォーク結合(Yt)の直接探索が可能
 - ➡トップ湯川は結合定数が大 → SMからのズレ(SUSYなどの寄与)の検証

3

ヒッグス2光子崩壊チャンネル(1)

- •2光子の不変質量(m_{γγ})の分解能がよい→系統誤差:小
- ●崩壊分岐比が小さい (0.3 %) →統計誤差:大
 - ➡ signal acceptanceを稼ぐことが重要

トリガーの選択

- ●従来は2光子トリガーを使用
 - ➡横方向運動量 (pT) の高いものから pT^{v1} > 35 GeV, pT^{v2} > 25 GeV
 - ➡それより低いpTの信号を 7.7 % 落とす

●従来は2光子トリガーを使用 レプトントリガー導入により pTの低い光子のイベント取得可 ➡横方向運動量 (pT) の高いもの 研究目的:低いpTの光子を考慮する ➡それより低いpTの信号を 7.7 9 ことによる発見感度向上の検証 ATLAS Simulation Work in Progress ANNN W $\underbrace{0}_{0} 180 = m_{H} = 125 \text{ GeV}$ XXXXX °≂_⊢160 h g 92.3 % 140 120 100 80 g 60 M www (q)40 20 v (q) 60 80 100 120 140 160 180 200 ttH過程(終状態にレプトンを含むチャンネル) $p_{\tau}^{\gamma^1}$ [GeV] 5

信号のacceptanceを稼ぐ

事象選別(従来)

事象選別(従来)

lepton (e or µ) 1個以上 (pT > 10 GeV)

jet 2個以上 (pT > 25 GeV), うちb-tag jet 1個以上

Missing E_T > 20 GeV or b-tag jet 2個以上

事象選別(従来)

トップクォーク対 (ttHらしいもの) の選択

光子のpTに要求のないトリガーを用いた新信号領域

※選定の最適化は未着手

光子のpTに要求のないトリガーを用いた新信号領域

※選定の最適化は未着手

Photon pT Threshold Scan

• Requirement for new SR

- ➡ Fail nominal ttH selection
- → Relaxed photon selection:
 - pT_v > X GeV for all photon
 - scanning 12 GeV < X < 25 GeV
 - Loose / Tight photon ID
 - pT / myy > X/100 for leading & sub-leading photons
 - scanning 0.12 < **X/100** < 0.25
- Other requirement: same as nominal lepton category (need to be optimized for new SR)
- Additional selection is required for leading lepton (offline cut to emulate online cut)

object	variable	di-photon trigger	single lepton trigger*
electron	рТ	> 10 GeV	> 26 GeV
	PID	Medium	Tight
	Isolation	Loose	ivarloose
muon	рТ	> 10 GeV	> 26 GeV
	PID	Medium	Medium
	Isolation	Gradient Loose	ivarmedium

*only for leading lepton

How to Estimate Significance

- Calculated by #events in blind region: $120 < m_{vv} < 130$ GeV (counting analysis)
 - only statistics is considered
 - Signal : #MC events
 - BC : #events estimated by sidebands (regarded as flat distribution)

Worse S/B wrt. nominal lepton category (even if it is naively expected...)

pT Treshold Scan Result

~ 18 GeV is the best point in case of loose photon selection (but almost flat in lower pT region)

Naive Ideas to Reduce BG (1)

• tt + jet (jet fakes to photon)

→ S/B will be improved by optimise isolation cut in 1 led trigger SR?

Naive Ideas to Reduce BG (2)

• tt + yy

- ➡truthによるとprompt photonとFSRが~80%
- ➡topや他の生成objectに近い(dRが小さい)?

Distance between y and something

- Inclusive photon selection
 - ➡ pT > 25 GeV
 - no tt selection

(Review) Idea for adding "1 Lepton Trigger" SR

• $pT_v \le 25$ GeV event cannot be picked up due to di-photon trigger

- \blacktriangleright requiring $pT_{y1}\,/\,m_{yy} \geq 0.35$, $pT_{y2}\,/\,m_{yy} \geq 0.25$
- Adding single lepton trigger category as new SR
 - can extend acceptance to low photon pT region

(Review) BG Estimation

- Estimating the number of BG in the SR with data
- HIGG1D1 doesn't contain low pT photon
 - → Using **JETM2** derivation
 - 1 lep trigger skimming
 - In JETM2, photon pointing NN method cannot be used to decide PV
 - because some track info. is thinned
 - so hardest vertices are chosen as PV for both derivation

New Trigger Requirements

- Selection
 - → lower pT leptons are available if 1 let + multi photon triggers are chosen

object	variable	1 lepton trigger	1 lepton + 2 photon trigger
electron	рТ	> 26 GeV	> 20 GeV
muon	рТ	> 26 GeV	> 20 GeV
photon	рТ	-	> 10 GeV
	Nphoton	-	>= 2

• File size

- select 1 xAOD file and applying above trigger to HIGG1D1 derivation
 - ▶ xAOD file size: 2,537,680 KB

▶ <µ> = 21.5

- → Di-photon trigger (nominal HIGG1D1) : 25,860 KB
- → Di-photon || 1 lepton trigger : 178,496 KB (×6.90 wrt. nominal HIGG1D1)
- → Di-photon || 1 lepton + multi photon trigger : 36,736 KB (×1.42 wrt. nominal HIGG1D1)

