This is an example of the %BEGINLATEX{inline="1" density="200" gamma="1.0" color="Purple"}%\LaTeX%ENDLATEX% rendering possibilities using the LatexModePlugin.
The singular value decomposition of a matrix is defined as %BEGINLATEX{label="one" color="Green"}% \begin{displaymath} A = U \Sigma V^H \end{displaymath} %ENDLATEX% where and are both matrices with orthonormal columns, indicates a complex-conjugate transpose, and is a diagonal matrix with singular values along the main diagonal. Eq. %REFLATEX{one}% is just one of the many matrix decompositions that exists for matrix .
Math Plugin
The following will only display correctly if this plugin is installed and configured correctly.
\int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}
\int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}
{\cal P} & = & \{f_1, f_2, \ldots, f_m\} \ {\cal C} & = & \{c_1, c_2, \ldots, c_m\} \ {\cal N} & = & \{n_1, n_2, \ldots, n_m\}
{\cal P} & = & \{f_1, f_2, \ldots, f_m\} \ {\cal C} & = & \{c_1, c_2, \ldots, c_m\} \ {\cal N} & = & \{n_1, n_2, \ldots, n_m\}
\cal
A, B, C, D, E, F, G, H, I, J, K, L, M, \ \cal
N, O, P, Q, R, S, T, U, V, W, X, Y, Z
\cal A, B, C, D, E, F, G, H, I, J, K, L, M, \ \cal N, O, P, Q, R, S, T, U, V, W, X, Y, Z
\sum_{i_1, i_2, \ldots, i_n} \pi * i + \sigma
\sum_{i_1, i_2, \ldots, i_n} \pi * i + \sigma
-- Koji Nakamura - 2016-04-01