Difference: TestPageForCommand (1 vs. 4)

Revision 42017-09-25 - KojiNakamura

Line: 1 to 1
 
META TOPICPARENT name="WebHome"

Please use this page to test Twiki Command

Revision 32016-06-05 - KojiNakamura

Line: 1 to 1
 
META TOPICPARENT name="WebHome"

Please use this page to test Twiki Command

Image Gallery Plugin

Changed:
<
<
DSC_0783.JPG DSC_1033.JPG DSC_1209.JPG          
DSC_0783  DSC_1033  DSC_1209       
There are 3 images in this page<br /><br />
>
>
DSC_0783.JPG DSC_1033.JPG DSC_1209.JPG  
DSC_0783  DSC_1033  DSC_1209   
There are 3 images in this page

 

Action Items Plugin

Revision 22016-04-01 - KojiNakamura

Line: 1 to 1
 
META TOPICPARENT name="WebHome"

Please use this page to test Twiki Command

Added:
>
>

Image Gallery Plugin

DSC_0783.JPG DSC_1033.JPG DSC_1209.JPG          
DSC_0783  DSC_1033  DSC_1209       
There are 3 images in this page<br /><br />

Action Items Plugin

Due date Description State  
2017-02-10 Write Master thersis edit
 

Latex Plugin

This is an example of the %BEGINLATEX{inline="1" density="200" gamma="1.0" color="Purple"}%\LaTeX%ENDLATEX% rendering possibilities using the LatexModePlugin.

Changed:
<
<
The singular value decomposition of a matrix is defined as %BEGINLATEX{label="one" color="Green"}% \begin{displaymath} A = U \Sigma V^H \end{displaymath} %ENDLATEX% where and are both matrices with orthonormal columns, indicates a complex-conjugate transpose, and is a diagonal matrix with singular values along the main diagonal. Eq. %REFLATEX{one}% is just one of the many matrix decompositions that exists for matrix .
>
>
The singular value decomposition of a matrix is defined as %BEGINLATEX{label="one" color="Green"}% \begin{displaymath} A = U \Sigma V^H \end{displaymath} %ENDLATEX% where and are both matrices with orthonormal columns, indicates a complex-conjugate transpose, and is a diagonal matrix with singular values along the main diagonal. Eq. %REFLATEX{one}% is just one of the many matrix decompositions that exists for matrix .
 

Math Plugin

Line: 43 to 50
 \sum_{i_1, i_2, \ldots, i_n} \pi * i + \sigma

-- Koji Nakamura - 2016-04-01

Added:
>
>
META FILEATTACHMENT attachment="DSC_1033.JPG" attr="" comment="" date="1459488444" name="DSC_1033.JPG" path="DSC_1033.JPG" size="4239307" user="KojiNakamura" version="1"
META FILEATTACHMENT attachment="DSC_1209.JPG" attr="" comment="" date="1459488443" name="DSC_1209.JPG" path="DSC_1209.JPG" size="3991054" user="KojiNakamura" version="1"
META FILEATTACHMENT attachment="DSC_0783.JPG" attr="" comment="" date="1459488533" name="DSC_0783.JPG" path="DSC_0783.JPG" size="3244970" user="KojiNakamura" version="1"

Revision 12016-04-01 - KojiNakamura

Line: 1 to 1
Added:
>
>
META TOPICPARENT name="WebHome"

Please use this page to test Twiki Command

Latex Plugin

This is an example of the %BEGINLATEX{inline="1" density="200" gamma="1.0" color="Purple"}%\LaTeX%ENDLATEX% rendering possibilities using the LatexModePlugin.

The singular value decomposition of a matrix is defined as %BEGINLATEX{label="one" color="Green"}% \begin{displaymath} A = U \Sigma V^H \end{displaymath} %ENDLATEX% where and are both matrices with orthonormal columns, indicates a complex-conjugate transpose, and is a diagonal matrix with singular values along the main diagonal. Eq. %REFLATEX{one}% is just one of the many matrix decompositions that exists for matrix .

Math Plugin

The following will only display correctly if this plugin is installed and configured correctly.

\int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}

\int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}

{\cal P} & = & \{f_1, f_2, \ldots, f_m\} \ {\cal C} & = & \{c_1, c_2, \ldots, c_m\} \ {\cal N} & = & \{n_1, n_2, \ldots, n_m\}

{\cal P} & = & \{f_1, f_2, \ldots, f_m\} \ {\cal C} & = & \{c_1, c_2, \ldots, c_m\} \ {\cal N} & = & \{n_1, n_2, \ldots, n_m\}

\cal A, B, C, D, E, F, G, H, I, J, K, L, M, \ \cal N, O, P, Q, R, S, T, U, V, W, X, Y, Z

\cal A, B, C, D, E, F, G, H, I, J, K, L, M, \ \cal N, O, P, Q, R, S, T, U, V, W, X, Y, Z

\sum_{i_1, i_2, \ldots, i_n} \pi * i + \sigma

\sum_{i_1, i_2, \ldots, i_n} \pi * i + \sigma

-- Koji Nakamura - 2016-04-01

 
This site is powered by the TWiki collaboration platform Powered by PerlCopyright © 2008-2022 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback